Search code snippets, questions, articles...

Check if a column contains zero values only in Pandas DataFrame

In this post, we are going to learn to check whether all the values of a DataFrame column are 0 or not. We will be using the column name for that.
Best JSON Validator, JSON Tree Viewer, JSON Beautifier at same place. Check how cool is the tool

First, create the Pandas DataFrame

We need to create a Dataframe with multiple columns and rows where we will check if a column has zero values only.

import pandas as pd

employees = [
    ['Robin', 30, 0, 'India'],
    ['Rick', 35, 0, 'US'],
    ['Tony Stark', 24, 0, 'US'],
    ['Roney', 24, 0, 'Canada'],
    ['Sumit', 24, 0, 'India'],
    ['Parek Bisth', 24, 0, 'India']
]

# create dataframe
df = pd.DataFrame(employees, columns=['Name', 'Age', 'PeerCount', 'Country'])

print(df)

Output

          Name  Age  PeerCount Country
0        Robin   30          0   India
1         Rick   35          0      US
2   Tony Stark   24          0      US
3        Roney   24          0  Canada
4        Sumit   24          0   India
5  Parek Bisth   24          0   India

Check if a column contains 0 values only

We will use the all() function to check whether a column contains zero value rows only. We will be using the below code to check that.

Check if the 'Age' column contains zero values only

# check if Age column contains 0 values only
if (df['Age'] == 0).all():
    print('All values in Age column are zero')
else:
    print('All values in Age column are not zero')

Output

All values in Age column are not zero

Check if the 'PeerCount' column contains zero values only

# check if PeerCount column contains 0 values only
if (df['PeerCount'] == 0).all():
  print('All values in PeerCount column are zero')
else:
  print('All values in PeerCount column are not zero')

Output

All values in PeerCount column are zero

Full Code Example

import pandas as pd

employees = [
  ['Robin', 30, 0, 'India'],
  ['Rick', 35, 0, 'US'],
  ['Tony Stark', 24, 0, 'US'],
  ['Roney', 24, 0, 'Canada'],
  ['Sumit', 24, 0, 'India'],
  ['Parek Bisth', 24, 0, 'India']
]

# create dataframe
df = pd.DataFrame(employees, columns=['Name', 'Age', 'PeerCount', 'Country'])

print(df)

# check if PeerCount column contains 0 values only
if (df['PeerCount'] == 0).all():
  print('All values in PeerCount column are zero')
else:
  print('All values in PeerCount column are not zero')
Was this helpful?
0 Comments