python
Create pandas DataFrame and add columns and rows to it
There are several ways to create DataFrame in pandas and add data to it as columns and rows.
import pandas as pd
#first method - create empty dataframe
df = pd.DataFrame()
# append columns and rows to this dataframe
df['username'] = ['john', 'neil', 'curtis']
df['status'] = ['active', 'disabled', 'active']
print(df)
#----------------------------------------------------------------------------------#
#second method - create dataframe with columns
df = pd.DataFrame(columns = ['username', 'status'])
# append rows to the abo
df = df.append({'username' : 'john', 'status' : 'active'}, ignore_index = True)
df = df.append({'username' : 'neil', 'status' : 'disabled'}, ignore_index = True)
df = df.append({'username' : 'curtis', 'status' : 'active'}, ignore_index = True)
print(df)
#----------------------------------------------------------------------------------#
#make data frame with rows having - NaN values at index - a, b and c
df = pd.DataFrame(columns = ['username', 'status'], index = ['a', 'b', 'c'])
print(df)
# +---+----------+--------+
# | | username | status |
# +---+----------+--------+
# | a | NaN | NaN |
# | b | NaN | NaN |
# | c | NaN | NaN |
# +---+----------+--------+
# add rows at already created indexes
df.loc['a'] = ['john', 'active']
df.loc['b'] = ['neil', 'disabled']
df.loc['c'] = ['curtis', 'active']
print(df)
Was this helpful?
Similar Posts
- Get the count of rows and columns of a Pandas DataFrame
- Sort a DataFrame by rows and columns in Pandas
- Reorder dataframe columns using column names in pandas
- Change the name of columns in a pandas dataframe
- Delete one or multiple columns from Pandas Dataframe
- Select specific columns from a Pandas DataFrame
- Loop through DataFrame rows in python pandas