python
                        
                    
                    Insert new column with default value in Pandas DataFrame
To add a column with some default value in rows to a pandas Dataframe, we can use the methods explained here.
import pandas as pd
data = {
  'alphabets': ['a', 'b', 'c', 'd']
}
# Create dataframe
df = pd.DataFrame(data)
print(df)
# Add new column with default value 0
df['code'] = 0
print(df)
                        Output
  alphabets
0         a
1         b
2         c
3         d
  alphabets  code
0         a     0
1         b     0
2         c     0
3         d     0Using the above code example we are adding a new column "code" to DataFrame df with default value 0 to all the rows of column "code".
Example 2: Use assign() function to add column with default value
We can also use the assign() function of Pandas DataFrame to add a column with a default value to an existing DataFrame. To insert column "code" with default value 0 to a Dataframe df using Dataframe.assign() function, we can use the below code
Code Example
import pandas as pd
data = {
  'alphabets': ['a', 'b', 'c', 'd']
}
# Create dataframe
df = pd.DataFrame(data)
# Add new column with default value 0 - using assing() function
df = df.assign(code=0)
print(df)Output
  alphabets  code
0         a     0
1         b     0
2         c     0
3         d     0                    import pandas as pd
data = {
  'alphabets': ['a', 'b', 'c', 'd']
}
# Create dataframe
df = pd.DataFrame(data)
# Add new column with default value None
df['new_column'] = None
print(df)
#   alphabets new_column
# 0         a       None
# 1         b       None
# 2         c       None
# 3         d       None
                            Here we are adding default value None while inserting a new column to an existing DataFrame df.
                        import pandas as pd
data = {
  'alphabets': ['a', 'b', 'c', 'd'],
  'numeric_vals': [10, 20, 30, 40]
}
# Create dataframe
df = pd.DataFrame(data)
df.insert(1, 'new_column', 0, True)
print(df)
#   alphabets  new_column  numeric_vals
# 0         a           0            10
# 1         b           0            20
# 2         c           0            30
# 3         d           0            40
                            The insert() function of pandas DataFrame can also be used to add a column with default values to a DataFrame. We are adding a value 0 to all the rows of column new_column at location 1.
                        Was this helpful?
    
    Similar Posts
                        
                        - [Pandas] Add new column to DataFrame based on existing column
 - Add a new column with data to Pandas Dataframe
 - Change column orders using column names list - Pandas Dataframe
 - Add column to existing table with default value SQLAlchemy
 - Pandas - Delete,Remove,Drop, column from pandas DataFrame
 - Get a value from DataFrame row using index and column name in pandas
 - Add new row to an existing Pandas DataFrame